RapidKleen™ Auto-Strainer

Reliable and robust solution for your high-volume industrial filtration needs.
RapidKleen Auto-Strainer

The Design
The RapidKleen auto-strainer features simple, yet rugged construction. The RapidKleen auto-strainer housings are manufactured either in cast iron, carbon steel, or stainless steel. Strainers are available in flange sizes up to 40” for flow rates up to 40,000 gpm. Filter elements and all internal components are stainless steel. The only moving parts are the flushing and throttling arms. All contact parts are self-adjusting.

Filtration Operation
During the straining process, fluid flows through the inlet flange (1) into the bottom of the filter housing. A partial flow, approximately 50% of the unfiltered fluid, is fed through a central riser in the filter element assembly (2) to the top of the filter housing and into the open filter elements. The remaining fluid flows through the bottom of the filter elements (3). The fluid flows through the elements from the inside out.

During the cleaning cycle, each element is cleaned in succession, with no interruption of the straining process. Backflow is achieved with filtered process fluid (model 6000) or an external fluid (model 6050), for operating pressures less than 30 psi, or when straining sticky contaminants. High-pressure water or steam can be used as the external fluid in the model 6000.

Back flushing is controlled automatically based on either inlet/outlet differential or pre-set time intervals.

Overview

Features
- Flow capacities from 35 to 40,000 gpm
- Compact and space-saving design
- Highly efficient back-flushing system
- Large filter surface area
- Minimal back-flushing quantity
- Low pressure drops

Benefits
- Rugged design for long filter service life
- Low operating costs
- Extended maintenance intervals
- Available with 2” to 36” flanges
- Filter elements and tube sheets are removable as one assembly
Backwash Cycle
The RapidKleen auto-strainer uses open-ended cylindrical filter elements. As fluid flows through both ends of the elements, particles in suspension are trapped along the entire length of the elements. This ensures that contaminants are distributed uniformly over the entire filter surface area.

As deposits accumulate (Figure 1) differential pressure across the elements rises and a differential pressure switch (5) triggers a back-flushing cycle automatically.

A gear motor (6) starts the cycle by sliding the upper throttling arm (7) on a 6000 series (or rotating the upper flushing arm on a 6050 series) over the upper end of each filter element.

Simultaneously, the lower flushing arm (8) is rotated, sealing the bottom edge of each element, and the backwash valve (9) is automatically opened flushing contaminants to the drain.

The pressure gradient generated between system pressure and atmospheric pressure allows a small quantity of fluid to flow from the outside through the elements, detaching the particles from the elements. At the upper end of the filter elements, the throttling arm provides a cross flow, flushing down the detached particles. This combination (Figure 2) of axial and cross flows provides a high-effective flushing action, uniform across the entire filter surface area.

The Open-Ended Element Advantage
Because the filter elements are cylindrical and open at both ends, the RapidKleen auto-strainer elements are flushed with a much greater energy intensity compared to competitive strainer designs. The high-energy backwash allows for a very efficient screen cleaning resulting in fewer backwashes and less backwash water use.

Unlike conical or expanding disc filter elements, RapidKleen auto-strainer elements can be fitted with either lateral slot wedge wire or vertical slot wire. This option provides improved release characteristics during backwash for difficult contaminants.

System Data Necessary To Size A RapidKleen Auto-Strainer
- Flow rate
- Water contamination (PPM)
- Particle size to be removed
- Operation pressure
- Maximum allowable pressure loss in the strainer

Figure 1
Filtration phase

Figure 2
Filtration phase

Lateral slot wire

Vertical slot wire

Conical element

Cylindrical element

Flushing intensity with open-ended elements, throttled at the top

Intensity of the flushing action
<table>
<thead>
<tr>
<th>Model</th>
<th>Back-Flushing Liquid</th>
<th>Capacity</th>
<th>Particle Size Removed</th>
<th>Flange Size</th>
<th>Design Pressures</th>
<th>Housing Material</th>
<th>Back-Flushing Control</th>
<th>Filter Element Type</th>
<th>Element Construction</th>
<th>Control Panel</th>
<th>ASME "U" Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>Filtered process fluid</td>
<td>35–40,000 gpm</td>
<td>50–500 microns</td>
<td>2" to 36"</td>
<td>145 psig, 230 psig standard, to 580 psig on some models</td>
<td>Cast iron, carbon steel, 316 stainless steel (pickling and passivating optional), rubber-lined steel</td>
<td>Differential pressure timer override</td>
<td>Open-ended cylindrical elements</td>
<td>Lateral or vertical slotted wedge wire</td>
<td>Standard scope of supply 220, 460, 575V/3Ph/60Hz</td>
<td>Optional</td>
</tr>
<tr>
<td>6050</td>
<td>External fluid</td>
<td>35–11,000 gpm</td>
<td>50–500 microns</td>
<td>2" to 16"</td>
<td>145 psig, 230 psig standard, to 360 psig on some models</td>
<td>Cast iron, carbon steel, 316 stainless steel (pickling and passivating optional), rubber-lined steel</td>
<td>Differential pressure timer override</td>
<td>Open-ended cylindrical elements</td>
<td>Lateral or vertical slotted wedge wire</td>
<td>Standard scope of supply 220, 460, 575V/3Ph/60Hz</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Overview

Applications

- **Pulp and Paper**
 - Mill process water, intake river water, paper machine shower protection
- **Automotive**
 - Process water, cooling water, fire protection
- **Chemical/Petrochemical**
 - Process, fire protection, cooling water
- **HVAC**
 - Cooling water air conditioning systems, computer rooms
- **Mining**
 - Process and cooling water
- **Oil and Gas/Offshore**
 - Injection water for oil rigs
- **Power Generation**
 - Cooling water for turbines and oil circuits, sealing water
- **Sewage Treatment**
 - Effluent for use as process water, and prior to discharge into open waters
- **Steel**
 - Caster: Spray nozzle cooling water, internal machine (IM)
 - Hot Strip Mill: Laminar flow, workroll, descale water
 - Cold Mill: Make-up water for hydraulic systems, emulsions

Water flow rates per strainer size at 00 micron straining, as a function of pressure loss