INSTALLATION INSTRUCTIONS
FOR 8800, 8950, 81000, 81075-L JOINTS

Follow safety guidelines set forth by your Company when working on equipment.

STEP 1.
Check to make sure that all core sand, dirt, weld beads, pipe turnings, metal dust and other foreign matter has been removed from the piping, roll, dryer or cylinder before installing joint. This will help eliminate carbon seal ring scoring and damage to internal joint parts which could cause unnecessary downtime and maintenance.

STEP 2.
Attach the Quick Release Journal Flange (A) to the journal using appropriate size bolts and gaskets. Cross tighten bolts evenly. Place the metal gasket (B) into the recess of the “Q” journal flange. Slide the Quick Release Nipple Flange (C) over the rotary joint nipple (D) with its taper facing toward the journal. Place the two split taper wedges around the recessed area of the nipple tube and then slide the Quick Release Nipple Flange over them to hold in place.

STEP 3.
Lift the joint up and slide the nipple (D) into the journal flange recess and secure to the studs with nuts provided, cross tightening evenly. Note that the Quick Release Nipple Flange will not seat tightly against the face of the journal flange. When tight, there will be a space of approximately \(\frac{1}{8} \) - \(\frac{3}{16} \) between the two flanges.

SINCE THESE JOINTS ARE VERY LARGE, THEY MUST HAVE ADEQUATE SUPPORT IN ORDER TO MAINTAIN GOOD RUNNING CLEARANCES INTERNALLY. USUALLY THE SUPPORT RODS (E) ARE HELD IN POSITION WITH JOHNSON SUPPORT STANDS (F).

STEP 3.
Attach the support stands (F) to your base plate or framework, some shimming may be required. Slide the support rods (E) through holes in the ears of the rotary joint housing and the holes in the stands and secure in place with the square head set screws (J).
STEP 4.
Check the clearance between nipple (D) and wear plate I.D. (G). Johnson Drawing A97-16-3-13 lists the proper clearance and clearance gage size. Shim or adjust the support stands to obtain even clearance of 360° around the nipple and then secure the stands to the base plate.

IN THE NEXT SEQUENCE YOU WILL BE SETTING UP THE JOINT FOR PROPER RUNNING CLEARANCE.

STEP 5.
Thread a hex nut onto the inboard end of each support rod until they contact the inboard side of both ears. Continue evenly turning nuts (H) which will move the housing away from the roll until it offers some resistance. The internal keys will bottom out in their keyways.

STEP 6.
Reversing the direction, thread the two hex nuts back inward 1/8”. Then on the outboard end of each rod thread on a hex nut followed by a lockwasher and a second nut. Run them in until they contact the ears and then lock together. Make sure the ears are perpendicular to the journal center line and recheck the clearance from Step 4. Adjust as required.

STEP 7.
Connect piping to joint using Johnson bronze or stainless steel flexible metal hose. The hose(s) should be long enough so there is no binding or tension tending to move the joint off the journal centerline. (Refer to Johnson flexible metal hose Bulletin FMH.) The hose is designed to give the joint free movement and not used to compensate for poor piping. It should be straight and in a relaxed position, not stretched or compressed. When flanged hose is used, spool pieces in place of the hose are recommended for piping fabrication purposes (see spec sheet A97-PS-1615-4-1) of the drop legs. Then replace with the hoses.

IMPORTANT:

NEVER APPLY OIL OR GREASE TO JOHNSON JOINTS. THE SATURATED STEAM, CONDENSATE OR LIQUID PASSING THROUGH IS THE ONLY LUBRICATION REQUIRED FOR THE CARBON-GRAPHITE PARTS.

MINIMIZE RUNNING JOHNSON JOINTS DRY. EXCESSIVE CARBON SEAL WEAR MAY OCCUR.

CAUTION:
Check the rotary joint regularly to determine carbon seal ring wear using a seal ring wear indicator. Seal wear indicator tools are available from Johnson. Refer to installation drawing for seal ring wear check procedure. Should the seal ring wear away completely, the metal nipple can wear into the joint body or wearing plate, and eventually through it requiring extensive part replacement. This could also create a potential hazard.