Installation Instructions
for Type 6000 Series IC™ Rotary Joints with
ISSS™ Syphons

Follow your company’s safety procedures whenever working on Kadan Johnson products. Read all of the instructions before proceeding with the installation or repair.

Please refer to the Kadan Johnson assembly drawing for part identification. Assembly drawings are available on request from Kadan Johnson.

Lubricate all fasteners with anti-seize compound. Tighten all fasteners in a star pattern. Torque specifications are listed on the product assembly drawing and are available from Kadan Johnson.

STEP 1.
Remove all existing equipment down to the bare journal. Clean the journal gasket surfaces on the inside and outside of the journal.

STEP 2.
Assemble the internal spider (3) by inserting two syphon bushings (3A) into the end of the spider. Install a third syphon bushing into the bushing retaining ring (3B) and mount bushing retaining ring to the end of the internal spider. Secure into position using cap screws (3C). Tighten cap screws evenly to 20 ft-lbs (27 Nm).

STEP 3.
If an insulating sleeve (98) is being installed, install it following the insulating sleeve instructions. Inside the dryer, mount the internal spider (3) to the dryer head using a new gasket (7) and secure with cap screws (3D).

STEP 4.
Outside the dryer, install the journal flange (13) using a new gasket (11) and secure into position with socket head cap screws (12).

STEP 5.
Check to make sure that all debris has been removed from the piping and roll before installing the rotary joint. This will eliminate seal ring scoring and damage to the internal rotary joint parts which could cause unnecessary downtime and maintenance.

STEP 6.
Remove cap screws (2A). Remove head (2), head gasket (8), cap screws (45), lockwashers (44), pressure plate (43) and split wedges (42) and set aside.

STEP 7.
Place a new copper gasket (8Q) into the recess of the journal flange (13). Slide the quick release nipple flange (5) over the nipple (4) with its taper facing outward. Place two split wedges (55) into the recess of the nipple and then slide the quick release flange over them. Position the rotary joint assembly onto the support bracket while inserting the nipple into the recess of the journal flange. Install the cap screws that secure the rotary joint to the bracket. Do not tighten cap screws at this time. Align the holes in the quick release flange with the studs protruding from the journal flange and slide the quick release flange over them. Secure the quick release flange using hex nuts (5A). Note: The quick release flange will not seat tightly against the face of the journal flange. When tight, there should
be 1/8” to 3/16” (3 to 5 mm) space between the two flanges. The space should be equal around the circumference of the flanges.

Make sure the rotary joint is in alignment by checking the clearance between the nipple (4) and the wear plate (16). The clearance should be equal around the circumference of these parts. Make sure the rotary joint is level and square to the machine.

Once the rotary joint is in position and properly aligned, set the internal clearance by pulling the rotary joint away from the roll. Then move it back towards the roll 0.125” (3 mm) and lock it into position with the cap screws, securing the body to the bracket. Double check the rotary joint alignment.

STEP 8.
Inside the dryer, carefully slide the horizontal pipe (99) through the syphon bushings (3A) in the internal spider (3). Continue to slide the horizontal pipe through the journal and into the rotary joint until it passes through the wedge plate (40) and O-rings (41).

STEP 9.
Lubricate O-ring (10A) with silicone O-ring lube and place it into the O-ring groove in the face of the vertical condensate pipe flange (10B). Position the vertical condensate pipe flange against the horizontal pipe flange (10) and secure with cap screws (10C). Tighten cap screws evenly to 20 ft-lbs (27 Nm).

STEP 10.
Rotate the syphon assembly inside the dryer and make sure it clears all obstructions. Position the syphon pick-up fitting (1) at the bottom of the dryer.

STEP 11.
Set the gap between the bushing retaining ring (3B) and the horizontal pipe flange (10) to a minimum of 0.59” (15 mm).

STEP 12.
Secure syphon assembly into position by installing the split wedges (42) and pressure plate (43) into the wedge plate (40). Secure pressure plate with cap screws (45) and lockwashers (44) and tighten evenly to 8 ft-lbs (11 Nm). Tap pressure plate with a soft-faced hammer to seat the split wedges. Then tighten the cap screws evenly to 16 ft-lbs (22 Nm).

STEP 13.
Make sure the pick-up fitting (1) faces into the rotation of the dryer. Set the pick-up fitting clearance, between the bottom of the fitting and the dryer shell, to 0.25” (6 mm). Secure pick-up fitting by tightening the clamping bolts and nuts (1A) to 50 ft-lbs (68 Nm).

STEP 14.
Place head gasket (8) onto the head (2) and position the head to rotary joint assembly. Secure the head using cap screws (2A).

STEP 15.
Connect piping to rotary joint using Kadant Johnson flexible metal hose. The hose(s) should be long enough so there is no binding or tension to cause the rotary joint to move off the journal centerline. The rotary joint must be free to move outward to compensate for seal ring wear. See recommended flexible metal hose length chart in this instruction sheet.

IMPORTANT: Connect the hose directly to the rotary joint. Minimize the use of fittings and pipe, as the increased weight can affect the performance of the rotary joint. Provide suitable support for the pipe and fitting beyond the hose.

NOTE: Never apply oil or grease to Kadant Johnson rotary joints. The saturated steam, condensate, or liquid passing through it is the only lubrication required for the carbon graphite parts.

NOTE: Minimize running Kadant Johnson rotary joints dry. Excessive seal wear may occur.

CAUTION
Check the rotary joint regularly to determine carbon seal ring wear using a seal ring indicator. Seal wear indicator tools are available from Kadant Johnson. Refer to the rotary joint assembly drawing for seal ring wear checking procedures. Should the seal ring (6) wear away completely, the metal nipple will wear into the wear plate requiring part replacement.

Dimensions are for reference only and subject to change. Certified drawings are available on request. Please refer to Kadant Johnson Drawing Number A37640 for torque specifications.

<table>
<thead>
<tr>
<th>Hose Size</th>
<th>Minimum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1”</td>
<td>15” 380 mm</td>
</tr>
<tr>
<td>1 1/4”</td>
<td>18” 455 mm</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>18” 455 mm</td>
</tr>
<tr>
<td>2”</td>
<td>21” 530 mm</td>
</tr>
<tr>
<td>2 1/2”</td>
<td>22” 560 mm</td>
</tr>
<tr>
<td>3”</td>
<td>24” 610 mm</td>
</tr>
<tr>
<td>3-1/2”</td>
<td>24” 610 mm</td>
</tr>
<tr>
<td>4”</td>
<td>28” 710 mm</td>
</tr>
</tbody>
</table>

RECOMMENDED MINIMUM HOSE LENGTHS

Kadant Johnson products are built to a high standard of quality. Performance is what you desire: that is what we provide. Kadant Johnson products are warranted against defects in materials and workmanship for a period of one year after date of shipment. It is expressly understood and agreed that the limit of Kadant Johnson’s liability shall, at Kadant Johnson’s sole option, be the repair or resupply of a like quantity of non-defective product.