Follow your company’s safety procedures whenever working on Kadant Johnson products. Read all of the instructions before proceeding with the installation or repair.

Please refer to the Kadant Johnson assembly drawing for part identification. Assembly drawings are available on request from Kadant Johnson.

Lubricate all fasteners with anti-seize compound. Tighten all fasteners in a star pattern. Torque specifications are listed on the product assembly drawing and are available from Kadant Johnson.

STEP 1. Remove existing joint and journal flange. Leave horizontal pipe (99A) or insulating sleeve (99B) in position. See Method 2 for horizontal pipe installation and Method 3 for insulating sleeve installation.

NOTE: The filler flange (5) is application dependent. Please choose the mounting method that suits the application.

STEP 2. Method 1. See Figure 1. Clean the gasket surface on the end of the journal. If required, install filler flange (5) using a new gasket (8A) and socket head cap screws (5A). If a filler flange is not required, install wear plate (16) using a new gasket (8R) and socket head cap screws (16A) directly on to the end of the journal. Skip Step 3 if a wear plate is installed using this method.

Method 2. See Figure 2. Clean gasket surface on horizontal pipe (99A). Using gasket tack, position gasket (8A) against the filler flange (5). Position the filler flange over end of the journal. Align the bolt holes in filler flange with the tapped holes in the horizontal pipe. Secure into position using socket head cap screws (5A).

Method 3. See Figure 3. Clean o-ring (8B) surface on insulating sleeve (99B). Using gasket tack, position gasket (8A) into counter bore on filler flange (5). In some applications, there are two o-rings (8B). Lubricate o-ring(s) with silicon o-ring lubricant and place o-ring(s) into the o-ring gland, either in the filler flange or onto the end of the insulating sleeve. Position the filler flange to the end of the journal while engaging the o-ring(s) at the insulating sleeve. Secure into position using socket head cap screws (5A).

STEP 3. Place gasket (8R) against the wear plate (16). Position wear plate against filler flange (5). Secure into position using socket head cap screws (16A).

STEP 4. Position seal ring (6) with its spherical face mated with the spherical face machined into the wear plate (16). Wetting the seal ring with water will help hold it in position.

STEP 5. Position the joint and mounting plate assembly (20) to the overhung bracket (21). Attach the joint assembly to the overhung bracket using bolts (22) by passing the bolts through the slots in the overhung bracket and threading them into the joint mounting plate (20). Do not tighten the bolts completely, the joint will need to slide in the overhung bracket for set-up.

STEP 6. See Figure 4 Place a bolt with a flat washer (23) through the lug in the joint mounting plate (20) and thread it into the overhung bracket (21). Place into position two gauge blocks (25) between the filler flange (5) or wear plate (16) and the joint mounting plate (20). See joint assembly drawing for location. Move the rotary joint towards the journal by tightening the bolt (23) on the joint mounting plate until the gauge blocks contact the joint mounting plate and the filler flange. Tighten the bolts (22) and remove the gauge blocks.

STEP 7. See Figure 4 Make sure the seal ring (6) is centered on the nipple (4). Check the “X” dimension. Refer to the assembly drawing for the “X” dimension. If the seal ring is off-center or the “X” dimension is not correct, align the joint by loosening the bolts (22) and adjusting the joint mounting plate. Keep the joint mounting plate parallel to the filler flange by using the gauge blocks. The gauge blocks should set the “X” dimension when used.

STEP 8. Connect piping to joint using Kadant Johnson flexible metal hose. The hose(s) should be long enough so there is no binding or tension that will move the joint off the journal centerline of the roll. See recommended minimum hose length in Table 1.

NOTE: Connect the hose as close to the joint as possible. Minimize the use of pipe and fittings. Increased weight can affect the performance of the joint. Provide suitable support for the pipe and fittings beyond the hose.

Dimensions are for reference only and subject to change. Certified drawings are available on request. Please refer to Kadant Johnson Drawing Number A37640 for torque specifications.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

TABLE 1

<table>
<thead>
<tr>
<th>Hose Size</th>
<th>Minimum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>15" 380 mm</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>18" 450 mm</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>18" 450 mm</td>
</tr>
<tr>
<td>2"</td>
<td>21" 530 mm</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>24" 610 mm</td>
</tr>
<tr>
<td>3"</td>
<td>27" 690 mm</td>
</tr>
</tbody>
</table>

The Kadant Johnson Warranty

Kadant Johnson products are built to a high standard of quality. Performance is what you desire: that is what we provide. Kadant Johnson products are warranted against defects in materials and workmanship for a period of one year after date of shipment. It is expressly understood and agreed that the limit of Kadant Johnson’s liability shall, at Kadant Johnson’s sole option, be the repair or resupply of a like quantity of non-defective product.